NKTR-214 (CD-122-biased agonist) plus nivolumab in patients with advanced solid tumors: Preliminary phase 1/2 results of PIVOT

ClinicalTrials.gov Identifier: NCT02983045

Adi Diab¹, Michael Hurwitz², Daniel Cho³, Vali Papadimitrakopoulou¹, Brendan Curti⁴, Scott Tykodi⁵, Igor Puzanov⁶, Nuhad K. Ibrahim¹, Sara M. Tolaney⁷, Debby Tripathy¹, Jianjun Gao¹, Arlene O. Siefker-Radtke¹, Wendy Clemens⁸, Mary Tagliaferri⁹, Scott N. Gettinger², Harriet Kluger², James M. G. Larkin¹⁰, Giovanni Grignani¹⁰, Mario Sznol², Nizar Tannir¹

¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Yale School of Medicine, New Haven, CT, USA; ³NYU Medical Oncology Associates, New York, NY, USA; ⁴Providence Cancer Center and Earle A. Chiles Research Institute, Portland, OR, USA; ⁵University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁶Roswell Park Cancer Institute, Buffalo, NY, USA; ⁷Dana Farber Cancer Institute, Boston, MA, USA; ⁸Nektar Therapeutics, San Francisco, CA, USA; ⁹Royal Marsden NHS Foundation Trust London, United Kingdom; ¹⁰Candiolo Cancer Institute, Turin, Italy, Europe.
Dr. Adi Diab, The University of Texas MD Anderson Cancer Center

The following relationships exist related to this presentation:

Research funding (institution): Nektar Therapeutics, Bristol-Myers Squibb, Idera Pharmaceuticals, Apexigen
NKTR-214 Background: Harnessing the IL-2 Pathway to Increase TILs

- NKTR-214 prodrug design with sustained signaling
- Mitigation of rapid immune stimulation to achieve safe, outpatient regimen administered every 3 week IV dosing
- Biased signaling preferentially activates and expands effector T cells and NK cells over Tregs in the tumor microenvironment
- NKTR-214 increases proliferation of TILs and PD-1 expression on the surface of CD8+ T cells providing a mechanistic rationale for combining with nivolumab
PIVOT-02 Study Dose-Escalation in I-O Treatment-Naïve Patients: Enrollment Complete

Phase 1 (N=38) Enrollment Complete

- **I-O Treatment-Naïve**
 - MEL 1L (with known BRAF status) (N=11)
 - RCC 1L, 2L (N=22)
 - NSCLC 1L, 2L (EGFR & ALK WT) (N=5)

- **Confirmed locally advanced or metastatic solid tumors**
- **Measurable disease per RECIST 1.1**
- **ECOG 0 or 1**
- **Adequate organ function**
- **Fresh biopsy and archival tissue**

Dose Escalation and Maximum Administered Dose

- **RP2D N=25**
 - NKTR-214 0.006 mg/kg Q3W + NIVO 240 mg Q2W
 - NKTR-214 0.003 mg/kg Q2W + NIVO 240 mg Q2W
 - NKTR-214 0.006 mg/kg Q2W + NIVO 240 mg Q2W
 - NKTR-214 0.009 mg/kg Q3W + NIVO 360 mg Q3W

Dose Limiting Toxicities (N=2)
Stage IV IO-Naïve 1L Melanoma Dose Escalation Cohort (N=11)
Deepening of Responses Over Time

Best Overall Response by RECIST: ORR=7/11 (64%); DCR=10/11 (91%)

SITC 2017 (Data Cut: Nov 2, 2017)

ASCO 2018 (Data Cut: May 29, 2018)

Horizontal dotted lines indicate the thresholds for PD, PR and CR response according to RECIST (version 1.1) criteria. CR: Complete response, all target and non-target lesions cleared. # Best Overall Response is SD (PR for target lesions, PD per new lesion on confirmatory scan) + Best overall response is PR to (CR for target lesions, non-target lesions still present). -100% is PR (CR for target lesions, non-target lesions still present). “u”: Unconfirmed.
Stage IV IO-Naïve 1L RCC Dose Escalation Cohort (N=14)
Deepening of Responses Over Time

SITC 2017: ORR=6/13 (46%); DCR=11/13 (85%)
ASCO 2018: ORR=10/14 (71%); DCR=11/14 (79%)

Increased ORR With Continued Treatment
Patients with Initial Stable Disease Convert to Responses Over Time

Horizontal dotted lines indicate the thresholds for PD, PR and CR response according to RECIST (version 1.1) criteria. *Best overall response is PD (SD for target lesions, PD per non-target lesions). ‡: Unconfirmed.
Stage IV IO-Naïve 1-2L NSCLC Dose Escalation Cohort (N=5)
Deepening of Responses Over Time in PD-L1 Negative Patients

Best Overall Response by RECIST (2L): ORR=3/4 (75%); DCR=3/4 (75%)
Best Overall Response by RECIST (1L and 2L): ORR=3/5 (60%); DCR=4/5 (80%)

SITC 2017 (Data Cut: Nov 2, 2017)
ASCO 2018 (Data Cut: May 29, 2018)

PDL1 positivity for this analysis was 1% or greater. Horizontal dotted lines indicate the thresholds for PD, PR and CR response according to RECIST (version 1.1) criteria. CR: Complete response, all target and non-target lesions cleared. "u": Unconfirmed
PIVOT-02 RP2D Dose Expansion Cohorts in 5 Tumor Types: Enrollment Ongoing

Phase 1 (N=38) Enrollment Complete
- I-O Treatment-Naive
 - MEL 1L (with known BRAF status) (N=11)
 - RCC 1L, 2L (N=22)
 - NSCLC 1L, 2L (EGFR & ALK WT) (N=5)
- Confirmed locally advanced or metastatic solid tumors
- Measurable disease per RECIST 1.1
- ECOG 0 or 1
- Adequate organ function
- Fresh biopsy and archival tissue

Dose Limiting Toxicities (N=2)

Maximum Administered Dose
- NKTR-214 0.006 mg/kg Q3W + NIVO 240 mg Q2W
- NKTR-214 0.003 mg/kg Q2W + NIVO 240 mg Q2W
- NKTR-214 0.006 mg/kg Q2W + NIVO 240 mg Q2W
- NKTR-214 0.006 mg/kg Q3W + NIVO 360 mg Q3W

RP2D N=25†

Maximum Administered Dose
- NKTR-214 0.009 mg/kg Q3W + NIVO 360 mg Q3W

Phase 2 (Target N=330) Enrolling
- Melanoma 1L
 - IO naïve
- Melanoma 2/3L
 - IO R/R
- RCC 1L
 - IO naïve
- RCC 2/3L
 - IO R/R
- NSCLC 1L
 - IO naïve
- NSCLC 2L
 - IO R/R
- NSCLC 2L I-O R/R
- UC (Bladder) 1L Cis-Inelg.
 - IO naïve
- UC (Bladder) 2/3L
 - IO R/R
- TNBC 1/2L
 - IO naïve

†7 patients from 1L melanoma dose escalation cohort, 11 patients from 1L RCC dose escalation cohort included in RP2D expansion cohorts

RP2D: recommended Phase 2 dosing
PIVOT-02 RP2D Dose Expansion Cohorts in 5 Tumor Types: Enrollment Ongoing

Phase 1 (N=38) Enrollment Complete

- I-O Treatment-Naive
 - MEL 1L (with known BRAF status) (N=11)
 - RCC 1L, 2L (N=22)
 - NSCLC 1L, 2L (EGFR & ALK WT) (N=5)

- Confirmed locally advanced or metastatic solid tumors
- Measurable disease per RECIST 1.1
- ECOG 0 or 1
- Adequate organ function
- Fresh biopsy and archival tissue

RP2D N=25 †

- NKTR-214 0.006 mg/kg Q3W + NIVO 240 mg Q2W
- NKTR-214 0.003 mg/kg Q2W + NIVO 240 mg Q2W
- NKTR-214 0.006 mg/kg Q2W + NIVO 240 mg Q2W
- NKTR-214 0.006 mg/kg Q3W + NIVO 360 mg Q3W

Maximum Administered Dose

- NKTR-214 0.009 mg/kg Q3W + NIVO 360 mg Q3W

Dose Limiting Toxicities (N=2)

Phase 2 (Target N=330) Enrolling

- Melanoma 1L
 - IO naïve
- Melanoma 2/3L
 - IO naïve
- RCC 1L
 - IO naïve
- RCC 2/3L
 - IO naïve
- NSCLC 1L
 - IO naïve
- NSCLC 2L
 - IO naïve
- NSCLC 2L I-O R/R
 - IO naïve
- UC (Bladder) 1L Cis-Inelg.
 - IO naïve
- UC (Bladder) 2/3L
 - IO naïve
- TNBC 1/2L
 - IO naïve

†7 patients from 1L melanoma dose escalation cohort, 11 patients from 1L RCC dose escalation cohort included in RP2D expansion cohorts

RP2D: recommended Phase 2 dosing
The Fleming two stage design: alpha 0.1 and power 90% designed to show superiority over single agent checkpoint Inhibitor.

*Historical rates are for single checkpoint inhibitors

† 7 patients from 1L melanoma dose escalation cohort, 11 patients from 1L RCC dose escalation included in RP2D expansion cohorts.
Enrollment to I-O Naïve Cohorts That Met Fleming Efficacy Criteria as of May 29, 2018

<table>
<thead>
<tr>
<th>I-O Naïve Cohort</th>
<th>Eligible Per Protocol Treated at RP2D</th>
<th>Evaluable</th>
<th>Consecutive Enrollment Fleming Analysis N1</th>
<th>Consecutive Enrollment Fleming Analysis N1+N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L Melanoma</td>
<td>41†</td>
<td>37</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>1L RCC</td>
<td>48†</td>
<td>47</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>1L Urothelial (Cis-Ineligible)</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>Enrolling</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All other patient cohorts in PIVOT are ongoing and/or enrolling and have not yet met Fleming futility or efficacy criteria to-date.

† 7 patients from 1L melanoma dose escalation cohort, 11 patients from 1L RCC dose escalation cohort included in RP2D expansion cohorts.
Patient Demographics and Disease Characteristics

<table>
<thead>
<tr>
<th></th>
<th>1L Melanoma (N=41)</th>
<th>1L RCC (N=48)</th>
<th>Urothelial (Cis-eligible) (N=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>17 (41.5%)</td>
<td>10 (20.8%)</td>
<td>5 (31.3%)</td>
</tr>
<tr>
<td>Male</td>
<td>24 (58.5%)</td>
<td>38 (79.2%)</td>
<td>11 (68.8%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Range)</td>
<td>63 (22-80)</td>
<td>61 (40-78)</td>
<td>70 (54-83)</td>
</tr>
<tr>
<td>ECOG Performance Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>31 (75.6%)</td>
<td>29 (60.4%)</td>
<td>6 (37.5%)</td>
</tr>
<tr>
<td>1</td>
<td>9 (22.0%)</td>
<td>19 (39.6%)</td>
<td>10 (62.5%)</td>
</tr>
<tr>
<td>Not Done</td>
<td>1 (2.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD-L1 status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive ≥1%</td>
<td>20 (48.8%)</td>
<td>14 (29.2%)</td>
<td>7 (43.8%)</td>
</tr>
<tr>
<td>Negative <1%</td>
<td>14 (34.1%)</td>
<td>30 (62.5%)</td>
<td>7 (43.8%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>7 (17.1%)</td>
<td>4 (8.4%)</td>
<td>2 (12.6%)</td>
</tr>
</tbody>
</table>

* >95% measured using central lab (28-8 assays on fresh or archival tumor with specific cutoffs).
Disease Characteristics at Study Entry

1L Melanoma (N=41)

<table>
<thead>
<tr>
<th>BRAF status</th>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutant (V600E, V600K or other)</td>
<td>15</td>
<td>36.6</td>
</tr>
<tr>
<td>Wild-Type</td>
<td>25</td>
<td>61.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LDH*</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>33</td>
<td>80.5</td>
</tr>
<tr>
<td>Elevated > ULN</td>
<td>8</td>
<td>19.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage (7th edition AJCC)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M1a</td>
<td>6</td>
<td>14.6</td>
</tr>
<tr>
<td>M1b</td>
<td>18</td>
<td>43.9</td>
</tr>
<tr>
<td>M1c+**</td>
<td>17</td>
<td>41.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liver metastases</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>11</td>
<td>26.8</td>
</tr>
<tr>
<td>No</td>
<td>30</td>
<td>73.2</td>
</tr>
</tbody>
</table>

*Based on maximum value prior to dosing

1L RCC (N=48)

<table>
<thead>
<tr>
<th>IMDC score</th>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>5</td>
<td>10.4</td>
</tr>
<tr>
<td>Intermediate</td>
<td>34</td>
<td>70.8</td>
</tr>
<tr>
<td>Poor</td>
<td>9</td>
<td>18.8</td>
</tr>
</tbody>
</table>

1L Urothelial (N=16)

<table>
<thead>
<tr>
<th>Primary site</th>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary Bladder</td>
<td>10</td>
<td>62.5</td>
</tr>
<tr>
<td>Renal Pelvis</td>
<td>5</td>
<td>31.3</td>
</tr>
<tr>
<td>Urethra</td>
<td>1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liver metastases at baseline</th>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>2</td>
<td>12.5</td>
</tr>
<tr>
<td>No</td>
<td>14</td>
<td>87.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prior neoadjuvant/adjuvant therapy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>6</td>
<td>37.5</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>62.5</td>
</tr>
</tbody>
</table>
Stage IV IO-Naïve 1L Melanoma Cohort at RP2D: Achieved Pre-Specified Efficacy Criteria

Stage 1: ORR 11/13 (85%)
Stage 2: Best Overall Response ORR=14/28 (50%); DCR=20/28 (71%)

Horizontal dotted lines indicate the thresholds for PD, PR and CR response according to RECIST (version 1.1) criteria. -100% is PR for complete clearance of target lesions. CR is a complete response. "u": Unconfirmed. *Best overall response is PD; SD for target lesions but PD due to a new lesion. §Off study treatment with confirmed CR due to patient decision.

One PD-L1(-) patient had PD due to non-target lesions and target lesions were not assessed, therefore 27/28 patients included in waterfall plot.

Median Time on Study 4.6 Months (N=28) As of May 29, 2018

Data cut: May 29, 2018
Best % Change by RECIST 1.1

Stage 1: ORR 7/11 (64%)
Stage 2: Best Overall Response ORR=12/26 (46%); DCR=20/26 (77%)

PD-L1 Positive (≥1%)
PD-L1 Unknown
Treatment Ongoing

Median Time on Study 5.6 Months (N=26)
As of May 29, 2018

ORR PD-L1 (-) 9/17 (53%)
ORR PD-L1 (+) 2/7 (29%)
ORR PD-L1 Unknown 1/2 (50%)

Horizontal dotted lines indicate the thresholds for PD, PR and CR response according to RECIST (version 1.1) criteria. -100% is PR for complete clearance of target lesions. CR is a complete response, "u" Unconfirmed. *Best overall response is PD (SD for target lesions, PD for non-target lesions). §Off study treatment with confirmed PR due to patient decision.
Stage IV IO-Naïve 1L Urothelial Cohort (Cisplatin-Ineligible) Achieved Pre-Specified Efficacy Criteria

Stage 1: Best Overall Response ORR=6/10 (60%); DCR=7/10 (70%)

Horizontal dotted lines indicate the thresholds for PD, PR and CR response according to RECIST (version 1.1) criteria.
"u": Unconfirmed, -100% is PR for complete clearance of target lesions. CR is a complete response. *Best overall response is PD due to new lesion or non-target lesion progression. **uCR (confirmed PR by prior scan).

Median Time on Study 3.9 Months (N=10)
As of May 29, 2018

Data cut: May 29, 2018
Treatment-Related Adverse Events (AEs) at RP2D

<table>
<thead>
<tr>
<th>Preferred Term[^1]</th>
<th>NKTR-214 0.006 q3w + Nivo 360 (N=283)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-Related Grade 3 or higher (≥1% listed below)</td>
<td>40 (14.1%)</td>
</tr>
<tr>
<td>Hypotension</td>
<td>5 (1.8%)</td>
</tr>
<tr>
<td>Syncope</td>
<td>5 (1.8%)</td>
</tr>
<tr>
<td>Increased Lipase</td>
<td>4 (1.4%)</td>
</tr>
<tr>
<td>Rash*</td>
<td>4 (1.4%)</td>
</tr>
<tr>
<td>Dehydration</td>
<td>3 (1.1%)</td>
</tr>
<tr>
<td>Treatment-Related Grade 1-2 in >15%</td>
<td></td>
</tr>
<tr>
<td>Flu Like Symptoms**</td>
<td>166 (58.7%)</td>
</tr>
<tr>
<td>Rash*</td>
<td>126 (44.5%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>119 (42.0%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>89 (31.4%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>62 (21.9%)</td>
</tr>
<tr>
<td>Decreased Appetite</td>
<td>54 (19.1%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>43 (15.2%)</td>
</tr>
</tbody>
</table>

Patients who discontinued due to a TRAE

Data cut: May 7, 2018 includes any AE deemed treatment-related by investigator and includes all available adjudicated safety data.

[^1] Patients are only counted once under each preferred term using highest grade.

*Rash includes the following MedDRA preferred terms: Rash, Rash Erythematous, Rash Maculo-papular, Rash Pruritic, Erythema, Rash Generalized, Rash Papular, Rash Pustular, Rash Macular.

** Flu-like symptoms includes the following MedDRA preferred terms: Chills, Influenza, Influenza-like Illness, Pyrexia.
Immune-Mediated Grade ≥3 AEs at RP2D

<table>
<thead>
<tr>
<th>Immune-Mediated Adverse Events</th>
<th>NKTR-214 0.006 q3w + Nivo 360 (N=283)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any imAE (Grade ≥3)</td>
<td>10 (3.5%)</td>
</tr>
<tr>
<td>Grade ≥3 imAE Treated with Steroid / Immuno-modulating Medication</td>
<td>7 (2.5%)</td>
</tr>
<tr>
<td>Pneumonitis*/dyspnea</td>
<td>2 (0.7%)</td>
</tr>
<tr>
<td>Skin adverse event</td>
<td>2 (0.7%)</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Colitis</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Elevated Lipase</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Grade ≥3 Endocrinopathy</td>
<td>3 (1.1%)</td>
</tr>
<tr>
<td>Diabetes Mellitus Treated with Insulin</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Hyperglycemia Treated with Insulin</td>
<td>2 (0.7%)</td>
</tr>
</tbody>
</table>

- One treatment-related G5 pneumonitis related to nivolumab in patient with NSCLC pre-treated with carboplatin/pemetrexed and history of brain metastases

Data cut: May 7, 2018
NKTR-214 + Nivolumab Increased Lymphocyte Proliferation in Blood and CD8 T Cells in Tumor

"Proliferating Lymphocytes in Blood" were measured using flow cytometry of fresh whole blood for all patients that the met inclusion criteria and had matched Cycle 1 Day 1 (C1D1) and Cycle 1 Day 8 (C1D8) blood collections. Data presented as mean ± standard error. Fold-change calculated for C1D8/C1D1. Ki67 is a marker of proliferation. "Total CD8 T Cells in Tumor" measured using immunohistochemistry using biopsy specimens collected at baseline and week 3. Cells/mm² were counted and fold-change calculated for week3/baseline, data presented as mean ± standard error.

Adi Diab, M.D.
Conversion of PD-L1(-) to PD-L1(+) in Tumor Biopsies from Baseline to Week 3 is Associated with Clinical Benefit

- NKTR-214 + nivolumab can convert PD-L1(-) tumors to PD-L1(+)
 - PD-L1 negative to positive conversion in 9/17 (53%) of patients
- Patients that were PD-L1(+) at baseline, or converted to PD-L1(+) after start of treatment showed greatest clinical benefit

31 patients were available with matched baseline and week 3 results for PD-L1 status. Of these, 17 were PD-L1 negative at baseline. PD-L1 was assessed on tumor cells using a validated 28-8 method. Example image shown for UC patient at baseline and week 3, 20x magnification.
PIVOT-02 Preliminary Data Conclusions

• NKTR-214 in combination with nivolumab showed encouraging anti-tumor activity with notable ORR in PD-L1 negative patients (42% melanoma, 53% RCC, 60% urothelial).

• Pre-specified efficacy criteria were achieved in 1L melanoma, 1L renal cell carcinoma and 1L cisplatin-ineligible urothelial carcinoma which support the evaluation of NKTR-214 plus nivolumab in registrational trials.

• NKTR-214 in combination with nivolumab at the RP2D was well tolerated with a low rate of Gr3+ TRAEs including immune mediated AEs.

• Robust translational data confirm rationale for activation of the immune system in the tumor microenvironment with a conversion of PD-L1 negative tumors to PD-L1 positive on treatment.

• Ongoing enrollment in PIVOT-02 continuing for additional tumor types in I-O naïve and refractory settings.
Acknowledgments

A special thank you is extended to the patients, their families and all study staff who are participating and have participated in the PIVOT-02 study

MD Anderson
• Jianjun Gao, MD, PhD
• Nuhad K. Ibrahim, MD
• Vali Papadimitrakopoulou, MD
• Arlene O. Siefker-Radtke, MD
• Nizar Tannir, MD
• Debu Tripathy, MD

Dana-Farber Cancer Institute
• Sara Tolaney, MD, MPH

Yale University
• Scott Gettinger, MD
• Michael Hurwitz, MD, PhD
• Harriet Kluger, MD
• Mario Sznol, MD

Royal Marsden NHS Foundation Trust London
• James M. G. Larkin, MD, PhD

Perlmutter Cancer Center at NYU Langone
• Daniel Cho, MD

Roswell Park Cancer Institute
• Igor Puzanov, MD

University of Washington
• Scott Tykodi, MD, PhD

Candiolo Cancer Institute
• Giovanni Grignani, MD

Nektar and Bristol-Myers Squibb