NKTR-255: an IL-15-based therapeutic with optimized biological activity and anti-tumor efficacy

Peter Kirk, Murali Addepalli, Thomas Chang, Ping Zhang, Marina Konakova, Katsunobu Hagihara, Steven Pai, Laurie VanderVeen, Palakshi Obalapur, Peiwen Kuo, Phi Quach, Mekhala Maiti, Christie Fanton, Takahiro Miyazaki, Poorna Chandra, Arunasree Lanka, Ravi Nutakki, Lawrence Fong, Deborah Charych, Jonathan Zalevsky

Nektar Therapeutics, San Francisco, California; *Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California

Introduction

Interleukin-15 has been identified as a promising candidate for use as an immuno-oncology therapeutic, but the native cytokine has poor drug-like properties. NKTR-255 is a novel immunotherapeutic agent consisting of polymer-engineered IL-15 designed to optimally engage the IL-15 receptor complex and provide durable pathway activation in vivo. Here we show that NKTR-255 has greatly improved plasma and tumor exposure relative to IL-15, induces NK and CD8 T-cell activation and proliferation, and has single-agent efficacy in syngeneic tumor models.

Methods

Binding kinetics and affinity of NKTR-255 for IL-15Rα were measured by surface plasmon resonance using immobilized IL-15Rα. Cell-based potency was determined by treating CTLL-2 cells with NKTR-255 at a range of concentrations and measuring phosphorylation of STAT5 in cell lysate by immunoassay. Pharmacokinetic analysis was performed following single-dose intravenous administration of IL-15 and NKTR-255 in normal mice and in mice bearing subcutaneous B16F10 and CT-26 tumors, with analytes quantified in tumor and plasma by ELISA. Immunophenotyping studies were performed by flow cytometry on lymphocytes from peripheral blood of NKTR-255-treated and IL-15-treated normal mice and cytokine production in cell lysate by immunoassay. Pharmacokinetic analysis was performed following single-dose intravenous administration of IL-15 and NKTR-255 in normal mice and in mice bearing subcutaneous B16F10 and CT-26 tumors, with analytes quantified in tumor and plasma by ELISA. Immune monitoring studies were performed using a MesoScaleDevice immunoassay.

Results

NKTR-255 binds to IL-15Rα

NKTR-255 binds to IL-15Rα and induces STAT5 phosphorylation in CTLL-2 cells with subnanomolar EC50. Following intravenous administration, NKTR-255 demonstrates a greatly reduced clearance rate compared to IL-15, with plasma t1/2 of 22-26h versus <1h for IL-15. Tumor exposure of NKTR-255 was 50-fold greater than IL-15 in B16F10-bearing C57Bl/6 mice and 110-fold greater in CT-26-bearing Balb/c mice. Immune monitoring studies in normal mice showed an induction of Ki-67 and CD122 expression in NK cells, indicating proliferation and activation. In tumor-bearing mice, NKTR-255 treatment resulted in an increased CD8:CD4 and CD8:Treg ratio in tumor and spleen, and an increased frequency of CD8+TNFα+IFNγ+ T-cells. Tumor growth inhibition was observed in both CT-26 and TRAMP-C2 models.

NKTR-255 induces NK cell proliferation and activation

A single i.v. dose of NKTR-255 induces expression of proliferation marker Ki-67 on NK cells peaking at 72hr, with a corresponding increase in frequency of NK cells in blood. Expression of NK activation marker CD212a was also increased – histograms shows 72 hour timepoint. Immunophenotyping studies in normal mice showed an induction of Ki-67 and CD122 expression in NK cells, indicating proliferation and activation. In tumor-bearing mice, NKTR-255 treatment resulted in an increased CD8:CD4 and CD8:Treg ratio in tumor and spleen, and an increased frequency of CD8+TNFα+IFNγ+ T-cells. Tumor growth inhibition was observed in both CT-26 and TRAMP-C2 models.

NKTR-255 induces sustained signaling in lymphocytes in vivo

Mice received a single i.v. dose of 0.3 mg/kg NKTR-255 (left) or IL-15 (right), then STAT5 phosphorylation in lymphocyte subpopulations from whole blood was assessed by flow cytometry.

NKTR-255 is bioactive, with sub-nanomolar EC50

CTLL-2 cells were treated with test article for 10 minutes, then cells lysed and STAT5 phosphorylation assessed using a MesoScaleDevice immunoassay.

Compared to IL-15, NKTR-255 has greatly improved plasma and tumor exposure

Pharmacokinetic data are shown for IL-15 and two PEG-IL-15 conjugates with linkers tuned to provide different PEG release kinetics. All were administered i.v. at 0.5 mg/kg.

Immunophenotypic changes induced by NKTR-255 in tumor-bearing mice

NKTR-255 treatment results in reduced tumor growth rate, an increase in the CD8:Treg ratio in spleen and tumor, and an increase in the frequency of IFNγ/TNFα CD8 T-cells.

NKTR-255 reduces tumor burden in CT-26 and B16F10 lung metastasis models

Tumors injected i.v. on day 0. NKTR-255 dosed i.v. at 0.3 mg/kg on d1, 5, 10. IL-15 dosed at 0.3 mg/kg i.p. on d1,2,3,4,5,6,7,8,9,10,11,12. Metastases counted on d13

Discussion

NKTR-255 treatment results in sustained IL-15 activity, which induces CD8 T-cell and NK cell activation and proliferation, and produces long-lived immunophenotypic changes in tumor-bearing mice. The design of NKTR-255 enables a potential drug-like therapeutic strategy for accessing IL-15-based immunotherapy.