NKTR-181: A Novel Opioid Analgesic That Exhibits Reduced Abuse Potential and Maintains Full Analgesic Activity Following Repeat Dosing in Preclinical Rodent Models

Introduction

The potential for abuse of opioid analgesics is believed to be related to rapid entry into the CNS (1,2). Attempts to change this dynamic to reduce abuse potential center around formulations that seek to make it more difficult to accelerate the delivery of a currently used opioid to the CNS. NKTR-181 is not a formulation based approach, NKTR-181 is a novel opioid, the properties of which are derived from the molecular structure of the compound. The physiochemical properties of NKTR-181 cause the drug to enter the brain more slowly while maintaining opioid receptor affinity.

Conclusions

- NKTR-181 is a novel opioid analgesic compound engineered to have a slowed rate of brain uptake compared with oxycodone.
- NKTR-181 displays markedly lower abuse liability than oxycodone in self-administration and drug discrimination studies.
- NKTR-181 maintains full analgesic efficacy following repeated oral dosing in a preclinical model of pain.
- The low abuse liability of NKTR-181, coupled with effective analgesic activity that is maintained following repeated oral dosing in preclinical models suggests this compound could represent a potent, low abuse opioid for the treatment of chronic pain.

Methods

Abuse Liability Models: Self-administration studies were performed on cocaine-trained rats using intravenous NKTR-181, cocaine or saline (n = 6 for each). Oxycodone (n = 18). In the habituation test, a lower test protocol was used in 17 sessions on three consecutive days, with reinforcement defined as ±20% variability over the three sessions. In the progressive ratio test, the number of lever presses required to deliver a defined dose was increased until animals no longer worked for reward. Drug discrimination studies were performed in rats trained to discriminate between oxycodone and vehicle. Animals then received cocaine or NKTR-181 to determine if either produced a response similar to oxycodone or saline.

Repeat Dosing Analgesia Model: Analgesia was determined using a mouse model of visceral pain following repeated oral dosing in a preclinical model of pain.

Results

NKTR-181 Displays Low Abuse Liability in Self Administration Studies in Rats

NKTR-181 Shows 100-fold lower abuse liability than oxycodone in self-administration studies in rats

- NKTR-181 displays markedly lower abuse liability than oxycodone in self-administration and drug discrimination studies.
- NKTR-181 shows no difference from saline over a 100-fold range of doses in self-administration studies in rats

Significant decrease in abuse liability for NKTR-181 compared to oxycodone following parenteral (i.p) administration

Sustained Analgesic Activity in a Preclinical Model of Pain with Repeated Oral Dosing of NKTR-181

Acute: 30 min postdose, and writhes were counted over a 20-min period.

Presented at the American Academy of Pain Management 22nd Annual Clinical Meeting; September 20-23, 2011; Las Vegas, NV

References


Self-administration studies were performed in rats as described in Methods, on animals treated with NKTR-181, oxycodone (OXY), cocaine (COC) or saline (SAL) at the indicated unit doses. NKTR-181 produced a response similar to that in saline-treated animals, with lower pressing rates typical of sampling behavior. Bar represents group means (n=4 OXY and NKTR-181; N=38 for COC).

In these studies, NKTR-181 demonstrated low abuse liability in rat models of self-administration and drug discrimination, as well as sustained analgesic effects in a model of visceral pain following repeat dosing.

References