Combining Bempegaldesleukin (CD122-preferential IL-2 pathway agonist) and NKTR-262 (TLR7/8 agonist) pairs local innate activation with systemic CD8+ T cell expansion to enhance anti-tumor immunity

Annah S. Rolig1, Daniel Rose1, Saul Kivimäe2, Werner Rubas2, William L. Redmond1

1 Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 2 Nektar Therapeutics, San Francisco, CA

Introduction
Previously, we demonstrated that radiation therapy (RT) combined with Bempegaldesleukin (BEMPEG; NKTR-214), a first-in-class CD122-preferential IL-2 pathway agonist, enhanced the anti-tumor efficacy of radiation therapy (RT) through a T cell-dependent mechanism, although systemic responses were modest.

Therefore, we explored alternative approaches to improve systemic tumor immunosensitivity.

Because toll-like receptor (TLR) signaling can induce antigen-presenting cell differentiation and reduce intratumoral immune suppression, we evaluated whether intratumoral NKTR-262, a polymeric-modified TLR 7/8 agonist, combined with systemic BEMPEG treatment resulted in improved tumor-specific immunity and survival compared to BEMPEG combined with RT.

Finally, comparison of BEMPEG combined with either RT or NKTR-262 will reveal mechanisms driving systemic anti-tumor responses.

Hypothesis
We hypothesized that BEMPEG/NKTR-262 therapy would be superior to BEMPEG/RT because TLR7/8 agonists enhance priming and antigen presentation, resulting in potent proinflammatory, anti-tumor immunity.

Methods

1. Peripheral blood immune cell phenotyping
   - BEMPEG/NKTR-262 induces significantly greater expansion of CD8 T cells in the blood than BEMPEG/RT

2. Tumor infiltrating immune cell phenotyping
   - BEMPEG/NKTR-262 induces less exhausted and more active CD8 T cell responses

3. NK cells are required for CD8 T cell expansion after BEMPEG/NKTR-262 combination therapy
   - BEMPEG/NKTR-262 combination treatment produces a higher fraction of activated tumor antigen-specific cytotoxic CD8 T cells systemically, correlating with superior anti-tumor efficacy relative to BEMPEG combined with RT.

Conclusions
- Efficacy of BEMPEG/NKTR-262 combination therapy depends on CD8 T cells and NK cells.
- BEMPEG/NKTR-262 combination therapy induces intratumoral CD8 T cells that have increased activity as demonstrated by increased granzyme expression and increased tumor killing, and reduced conversion to an exhausted phenotype (PD-1+; TIM-3+; LAG-3+)
- Loss of NK cells reduces CD8 T cell percentages and function in the peripheral blood and in the tumor, suggesting a connection between early NK cell function and anti-tumor adaptive immune responses.

Acknowledgements
Nektar Therapeutics
EACRI Flow Core and Cancer Research Animal Division (CRAD)