Pre-clinical Investigation of NKTR-255, a Polymer-Conjugated IL-15 with a Potent NK Cell-Dependent Anti-Tumor Efficacy

Takahiro Miyazaki, Murali Addepalli, Arunasree Lanka, Amol Murkar, Ravikumar Nutakki, Palakshi Obalapur, Peiwen Kuo, Phi Quach, Mekhala Maiti, Laurie Vanderveen, Ping Zhang, Loui Madakamutil, Jonathan Balewsky

Nektar Therapeutics, San Francisco CA

BACKGROUND

Interleukin-15 (IL-15) is a common γc cytokine that activates and provides survival benefit to memory T and NK cells. IL-15 is predominantly produced by myeloid cells and its receptor is a heterotrimeric receptor consisting of the IL-15 receptor α subunit and IL-2/IL-15 receptor βγ subunits. Exploiting the therapeutic value of native IL-15 has been challenging due to its unfavorable pharmacokinetic properties and undesirable tolerability profile. NKTR-255 is a polymer-conjugated human recombinant IL-15 that retains binding affinity to the α subunit of the IL-15 receptor and exhibits reduced clearance to provide a sustained pharmacodynamic response. Here we investigate the pharmacological properties of NKTR-255 on NK cells and the effect of NKTR-255 in NK cell-dependent tumor models.

RESULTS

IL-15-mediated signaling through cis- and trans-presentation

IL-15 binds the unique IL-15Rα chain and presents to the IL-2/IL-15Rβγ complex on the same (cis) or adjacent cell (trans). Engagement of the IL-2/IL-15Rβγ complex can induce JAK-STAT5 signaling, increasing survival and proliferation. This process is crucial for the proper support of IL-15 biology.

METHODS

In vitro assays: Mouse whole blood was stimulated with the indicated concentration of NKTR-255 or IL-15 for 20 minutes. Enriched mouse splenic NK cells were used as effectors in a standard flow-based cytotoxic assay against YAC-1 (a mouse T lymphoma cell line) target cells.

In vivo PD assays: Mice received single or three times (weekly) IV doses of 0.03 or 0.3 mg/kg of NKTR-255. Blood and spleen samples were collected to assess the NK cell population and function. Flow cytometry was used to measure pSTAT5, Ki-67, Mcl-1, Granzyme B, and CD16 in NK cells. Purified splenic NK cells from NKTR-255 treated mice were co-cultured with YAC-1 to measure cytotoxic function.

In vivo efficacy models: In the CT26 mouse model, 1x10^7 cells were administered intravenously on Day 0. Treatment was initiated on Day 1 at 0.03, 0.1, or 0.3 mg/kg of NKTR-255. Blood and spleen samples were collected to assess pSTAT5, Ki-67 positive peripheral NK population, and the absolute number of peripheral NK cells (C) by flow cytometry.

NKTR-255 showed a dose-dependent phosphorylation of STAT5 in the mouse NK cells with a EC50 of 42 ng/ml. Engagement of the IL-15 pathway enhanced cytotoxic function in mouse NK cells to kill YAC-1 cells at all effector ratios. Finally, NKTR-255 synergistically provided long-term survival benefit when administered with rituximab in the Daudi B cell lymphoma model.

CONCLUSIONS

- NKTR-255 engages the JAK/STAT5 pathway and enhances NK cell function with 10-fold less potency compared with IL-15
- A single dose of NKTR-255 substantially enhances in vivo proliferation and activation of NK cells
- Repeat dosing of NKTR-255 does not reduce the magnitude of NK cell responses
- A single dose of NKTR-255 provides sustained cytotoxic function for NK cells
- The properties of NKTR-255 to boost NK proliferation and activation translates into enhanced anti-metastatic activity in mouse tumor models
- NKTR255 also demonstrates synergistic activity with rituximab to provide long-term survival in the Daudi B cell lymphoma model

REFERENCES