NKTR-181: An Orally Available Mu-Opioid Agonist with Slow Rate of Uptake into the CNS, Exhibits Comparable Analgesic Efficacy with Reduced Abuse Liability and CNS Mediated Side Effects Compared to Oxycodone

Kathleen Gogas, PhD, Juergen Pfeiffer, MS, Irene Choi, PhD, Juli Evans, RVT, Dan McWeeney, BA, Phi Quach, BS, Patricia Trinh, MD, V. Gavoor, PhD, C. Simone Fishburn, PhD, Stephen D Harrison, PhD, Timothy A Riley, PhD, Stephen K Doberstein, PhD, Jennifer Rigs-Sauthier, PhD

Nektar Therapeutics, 1San Francisco, CA; 2Huntsville, AL *MPI Research Inc, Mattawan, Michigan

Abstract #224 / Poster #258: Presented at the American Academy of Pain Medicine 28th Annual Meeting: Pain Medicine, February 23-26, 2012, Palm Springs, CA

NKTR-181: An Orally Available Mu-Opioid Agonist with Slow Rate of Uptake into the CNS, Exhibits Comparable Analgesic Efficacy with Reduced Abuse Liability and CNS Mediated Side Effects Compared to Oxycodone

Introduction

- **Opioids are highly effective for the treatment of pain.**
- **Opioids are associated with serious CNS-related side effects, including respiratory depression, sedation and abuse liability.**
- **The abuse properties of opioid analogs are believed to relate to their rapid entry into the CNS.**
- **NKTR-181 is a mu-opioid molecular designed to provide clinically relevant analgesia while reducing CNS-mediated side effects.**
- **NKTR-181 binds to the mu-opioid receptor and acts as a full agonist at adenosine cyclase inhibition assays.**
- **NKTR-181 exhibits a slower rate of CNS uptake in rats compared to commonly used opioids.**
- **NKTR-181 displays markedly lower abuse liability than commonly used opioids when evaluated in self-administration studies in non-human primates and rats.**

Background

NKTR-181 exhibits pharmacological behavior characteristic of opioids and has been shown to have minimal analgesic activity in preclinical models of pain following oral administration in mice.

NKTR-181 Shows Analgesic Activity in a Preclinical Model of Pain

NKTR-181 shows comparable efficacy to oxycodone in the acetic acid writhing model in mice.

Acetic Acid-Writhing

- **NKTR-181 produces full suppression of acetic acid writhing.**
- **Minimal efficacy is achieved at 100 mg/kg p.o.**
- **Potency is reduced 1 to 4 hours after oral dosing.**
- **Acetate sustained for > 6 hours after oral dosing.**

For acetic acid writhing studies, CD-1 mice were treated orally with test articles, and 30 minutes later were injected intraperitoneally with 0.5% acetic acid (0.1 mL/10 g body weight). Writhes were counted over a 20 minute period. Data shown represent mean ± SEM values (n=5). The response 30 minutes post-dose, and is representative of NKTR-181 at all time points measured.

Results

NKTR-181 Displays Slow Distribution into the Brain Compared to Oxycodone

NKTR-181 displays a dramatically different distribution between brain and plasma following oral delivery in mice. Oxycodone (10 mg/kg, p.o.) produces > 80% oxycodone appropriate responding, whereas NKTR-181 produces > 80% NKTR-181 appropriate responding.

NKTR-181 exhibits less impact on CNS coordination compared to oxycodone

Reference

Conclusions

- **NKTR-181 is a new chemical entity, is a mu-opioid agonist that exhibits a slow rate of brain uptake following oral administration compared to oxycodone.**
- **NKTR-181 exhibits full efficacy in the acute writhing model in mice.**
- **NKTR-181 has reduced CNS mediated sedation.**
- **NKTR-181 shows low abuse liability in multiple animal models.**
- **NKTR-181 displays a wider therapeutic window through more favorable separation of analgesia from side effects compared with oxycodone.**
- **Subsequent Phase 1 clinical data validate preclinical observations and NKTR-181 is currently being prepared for Phase 2 development for chronic pain patients in 2012.**

References

2. Pharmacoecon Bolha Behav. 2007; 85:43-54.

NKTR-181 Demonstrates Less Sedative Potential Than Oxycodone at Emissograph Doses

NKTR-181 exhibits a wide therapeutic window compared to oxycodone.

Conclusions

- **NKTR-181 shows a more favorable separation of analgesia from side effects compared with oxycodone.**

References

2. Pharmacoecon Bolha Behav. 2007; 85:43-54.

