Combination of neoantigen DNA plasmid vaccine VB10.NEO and bempegaldesleukin (NKTR-214) induces strong neoantigen-specific T cell responses and sustained tumor regression in pre-clinical models

Abstract #2256

S. Granum1, H. Zell-Flagstad1, A. Beraas1, L. Skullerud1, E. Müller1, M. Axelsen1, K. Schjøtne1, J. Zalevsky2, A.B. Fredriksen1

1Vaccibody AS, Oslo, Norway; 2Nektar Therapeutics, San Francisco, CA

BACKGROUND

VB10.NEO is a potent DNA plasmid vaccine with intrinsic adjuvant effect designed for efficient delivery of personalized neoepitopes and is currently being tested in combination with checkpoint inhibitors in patients with advanced solid tumors.

Bempegaldesleukin (NKTR-214), a CD122-preferential IL-2 pathway agonist, provides sustained signaling through the heterodimeric IL-2 receptor pathway (IL-2Rβγ) to preferentially activate and expand NK and effector CD8+ T cells.

The combination of VB10.NEO and NKTR-214 greatly synergizes, resulting in up to 5-fold increase in the number of neoantigen-specific T cell responses compared to VB10.NEO alone in two different tumor models. A stronger response to each neoantigen was observed, but also to increased numbers of neoantigens, showing that both the breadth and depth of the immune responses were elevated. The stacked IFN-γ ELISPOT responses for all neoepitopes are shown for each tumor model.

EX VIVO T CELL RESPONSES

The combination of VB10.NEO and NKTR-214 greatly synergizes, resulting in up to 5-fold increase in the number of neoantigen-specific T cell responses compared to VB10.NEO alone in two different tumor models. A stronger response to each neoantigen was observed, but also to increased numbers of neoantigens, showing that both the breadth and depth of the immune responses were elevated. The stacked IFN-γ T cell responses for all neoepitopes are shown for each tumor model.

CONCLUSIONS

- **Combination of VB10.NEO and bempegaldesleukin (NKTR-214) synergizes to elicit greater breadth and depth of neoantigen-specific T cell responses than each individual treatment.**
- The synergistic effect was observed in both CD4 and CD8 T cells, and most pronounced on CD8 T cell responses, further supporting the combination's potential to induce strong immunogenic CD8+ T cell responses.
- VB10.NEO in combination with bempegaldesleukin (NKTR-214) and anti-PD-1 induce rapid, complete and durable tumor regression of small tumors and long-lasting stabilization of large tumors supporting the rationale for examining the combination clinically.
- A phase I clinical trial in squamous cell carcinoma of the head and neck (SCCHN) patients is planned to start 2019.

TUMOR PROTECTIVE IMMUNE RESPONSES

Adding NKTR-214 (from day 18) to a therapeutic treatment regimen with VB10.NEO and anti-PD-1 in the CT26 colon carcinoma model resulted in rapid, complete and long-lasting tumor regression in mice with relatively small tumors and long-lasting stabilization of larger tumors. Each line represents individual mice (n=10).

The immediate effect of adding NKTR-214 at day 18 (red line, left) is striking as the tumor growth reduced immediately. Tumor-free re-challenged mice were fully protected (right). The data demonstrate the strong rationale for bringing these unique and non-overlapping mechanisms together to create an effective treatment of established tumors.