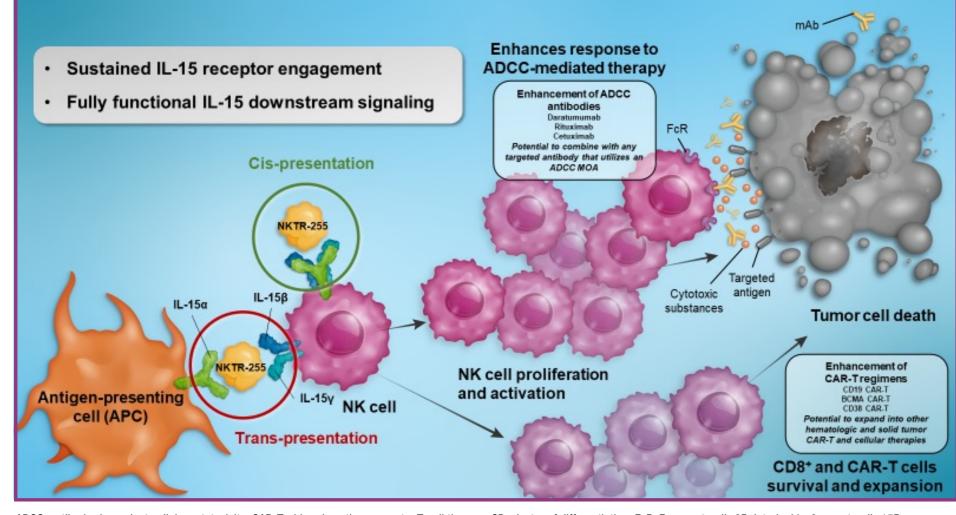
Safety, Tolerability, PK/PD, and Preliminary Efficacy of NKTR-255, a Novel IL-15 Receptor Agonist, in Patients with Relapsed/Refractory Hematologic Malignancies

Krina K. Patel^{1*}, Nina Shah², Alan Tan³, Andrew J. Cowan⁴, Cameron J. Turtle^{4,5}, Craig C. Hofmeister⁶, Taewoong Choi⁷, Hayder Saeed⁸, Julio C. Chavez⁸, Matthew J. Pianko⁹, Mitul Ghandi¹⁰, Sohail Chaudhry¹¹, Zachary Lee¹¹, Neha Dixit¹¹, Christie Fanton¹¹, Xiaoli Wang¹¹, Mary A. Tagliaferri¹¹, Jonathan Zalevsky¹¹, Miguel-Angel Perales¹²

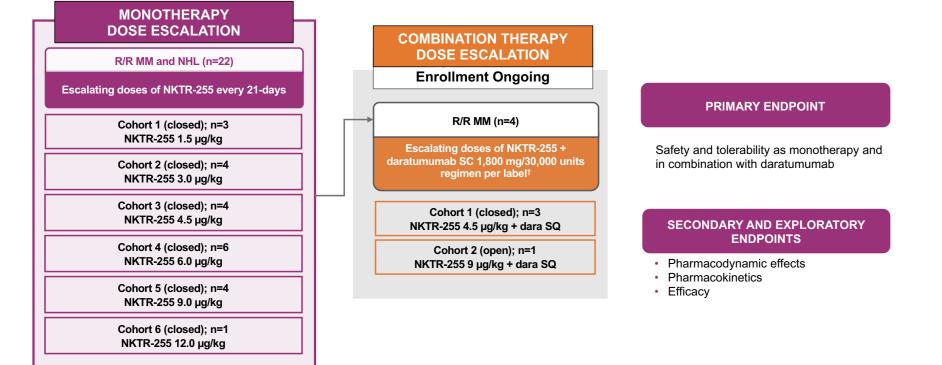
¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴University of Washington, Seattle, WA, USA; ⁵University of Sydney, Sydney, NSW, Australia; ⁶Winship Cancer Institute of Emory University, Atlanta, GA, USA; ⁷Duke University School of Medicine, Durham, NC, USA; ⁸H. Lee Moffitt Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁸H. Lee Moffitt Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁸H. Lee Moffitt Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ⁹Rogel Cancer Center, University, Atlanta, Cancer Center, Universi ¹⁰Virginia Cancer Specialists, Fairfax, VA, USA; ¹¹Nektar Therapeutics, San Francisco, CA, USA; ¹²Memorial Sloan Kettering Cancer Center, New York, NY, USA;


*Presenting author

BACKGROUND

- The therapeutic potential of daratumumab for advanced multiple myeloma (MM) is limited by the on-target cytotoxic effect on CD38 expressing NK cells.^{1,2}
- Natural killer (NK) cells are important for daratumumab-mediated antibody-dependent cellular cytotoxicity (ADCC).
- CD38⁺ NK cells are an unexplored therapeutic target for priming the immune system of MM patients and strategies to enhance NK cell population and function may improve outcomes.³
- IL-15R $\beta\gamma$ are highly expressed on NK cells and receptor activation leads to expansion and enhancement of NK cell function.⁴
- NKTR-255 is a polymer-conjugated rhIL-15 agonist with ≥10-fold longer half-life than rhIL-15 and has been shown to induce proliferation and activation of NK cells and promote survival and expansion of CD8⁺ T cells in the clinic.^{5,6,7}
- NKTR-255 also enhanced the antitumor activity of tumor-targeted antibodies that function by an ADCC mechanism,⁸ and has shown early evidence of clinical activity in combination with cetuximab in patients with solid tumors (NCT04616196).⁹
- This Phase 1 study (NCT04136756)¹⁰ evaluates the safety and tolerability of NKTR-255 monotherapy and in combination with daratumumab or rituximab in patients with hematologic malignancies.

Here we report preliminary data on safety, PK, and PD biomarkers from 26 patients treated with NKTR-255, including 4 patients treated in combination with daratumumal


NKTR-255 Retains the Full Spectrum of IL-15 Biology³

ADCC, antibody-dependent cellular cytotoxicity; CAR-T, chimeric antigen receptor T-cell therapy; CD, cluster of differentiation; FcR, Fc receptor; IL-2R, interleukin-2 receptor; IL-15R. interleukin-15 receptor: mAb. monoclonal antibody: MOA, mechanism of action; NK, natural killer.

STUDY DESIGN AND PATIENTS

Preliminary Safety, PK, and Biomarkers Data from the Ongoing Dose-Escalation Part of a Phase 1 Study in Patients With R/R MM or NHL (n=26)

*Dose-escalation rules: Successive cohorts each receive escalating doses of NKTR-255 every 21 days to determine the MTD/RP2D. A two-parameter Bayesian logistic regression model employing the escalation with overdose control principle was used to select dose level and determine the MTD. MTD will be declared when at least 6 patients are evaluated at a dose and the posterior probability of targeted toxicity is at least 50% for that dose. [†]Darzalex Fastpro[®] SC 4-week cycle regimen: Weeks 1-8: once weekly, Weeks 9-24: g2weeks, then Week 25 onwards q4weeks; NKTR-255 in Cycles 1-3 is administered on Day 2 (i.e., one day after daratumumab) of the cycle and on Day 1 (i.e., same day) Cycle 4 beyond.

Study Procedures and Assessments

PD, pharmacodynamic; PK, pharmacokinetic

Safety and Tolerability	PK and PD Biomarkers	Efficacy
 AEs were assessed by CTCAE v5.0 Safety population: all patients who received ≥1 dose of study drug 	 PK Derive PK parameters from concentration-time profiles PD Assessment of NK cells, CD8⁺ T cells, and CD4⁺ T cells Evaluation of inflammatory cytokines 	 Objective response: evaluated using IMWG for MM patients; Lugano for NHL patients Response-evaluable population: patients with ≥1 dose of study drug and ≥1 post-baseline response assessment Disease efficacy response measurements according to Protocol Amendment 1: MM Q2 cycles; NHL C5D8, then Q4 cycles Amendment 2: MM Q2 cycles; NHL C2D8, then Q4 cycles Amendment 3&4: MM Q1 cycle; NHL C2D8, then Q4 cycles

RESULTS

Patients with NHL (n=8)			Patients with MM (n=18)						
				NKTR-255 + Dara (n=4)					
Median age (range), years		65.5 (59–80)	Median age (range)	, years	64.0 (49–78)	61.5 (52–70			
Sex, n (%)	Female Male	e 4 (50) 4 (50) Sex, n (%) Female Male			4 (29) 10 (71)	2 (50) 2 (50)			
Median (range) time since diagnosis, months		53.6 (12.9–226.0)	Median (range) time since diagnosis, months		86.0 (25.2–231.7)	122.4 (90.9–174.3)			
Median (range) number of prior therapies		4 (1–12)	Median (range) num	Median (range) number of prior therapies		5.5 (5–10)			
Disease subtype, n (%)	Large B-cell lymphoma Diffuse large B-cell Lymphoma Follicular lymphoma Other/missing	1 (13) 4 (50) 2 (25) 1 (13)	Cytogenetic risk, n (%)			2 (50) 1 (25) 1 (25) 0			
Bulky disease, n (%)	Yes No Unknown	1 (13) 6 (75) 1 (13)	Paraprotein type, n (%)			1 (25) 1 (25) 2 (50) 0			
Prior therapies of interest, n (%)	Autologous stem cell transplants Allogenic stem cell transplants CAR-T	2 (25) 1 (13) 4 (50)	Prior therapies of interest, n (%)	Autologous stem cell transplants Allogenic stem cell transplants CAR-T IMiD Lenalidomide Proteasome inhibitor	9 (64) 1 (7) 6 (43) 14 (100) 13 (93) 14 (100)	3 (75) 1 (25) 3 (75) 4 (100) 4 (100) 4 (100)			
CD20 containing regimens, n (%)	Rituximab	8 (100)	CD38 experience, n (%) Yes		14 (100)	4 (100)			
nternational 0–1 Prognostic Index score, n (%) 4–5 Unknown		1 (13) 3 (38) 3 (38) 1 (13)	ISS stage at I screening, n (%) II III IV Not Available		7 (50) 4 (28) 1 (7) 0 2 (14)	2 (50) 1 (25) 0 0 1 (25)			

Clinical cutoff: October 20, 2022. multiple myeloma; NHL, non-Hodgkin lymphoma.

Accumulation

Mean (SD) Plasma NKTR-255 Concentration vs. Time

• The average half-life of NKTR-255 is \geq 10-fold longer than that reported for rhIL-15, 6 with no/ minimal accumulation following repeated dosing on a once every three-week dosing regimen. reliminary analysis with data cutoff date of March. 2, 2022. Parameters are presented as mean (CV%). Validated bioassay method was used to measure plasma concentration of NKTR-255, which was expressed in IL-15 content. Below limit of quantification samples were treated as 0 in summarizing NKTR-255 concentration-time profiles. PK, pharmacokinetic; SD, standard deviation; V coefficient of variation

Standard Treatment Protocols

Select TRAEs; n (%)	1.5 µg∕ kg (n=3)	3 µg/kg (n=4)	4.5 µg∕ kg (n=4)	6 µg/kg (n=6)	9 μg/kg (n=4)	12 µg/ kg (n=1)	4.5 µg/kg + dara (n=3)	9 μg/kg + dara (n=1)	Total (N=26)
Grade 1 or 2 (≥25% of sa	afety populat	ion)							
Flu-like symptoms ^a	2 (67)	4 (100)	4 (100)	5 (100)	2 (50)	1 (100)	2 (67)	0	20 (77)
Infusion-related reaction	0	0	3 (75)	3 (50)	2 (50)	1 (100)	1 (33)	1 (100)	11 (42)
Fatigue	0	2 (50)	1 (25)	3 (50)	2 (50)	1 (100)	2 (66)	0	11 (42)
Grade 3 (≥5% of safety population)									
Neutropenia ^b	0	1 (25)	1 (25)	0)	1 (25)	1 (100)	0	0	4 (18)
Anemia	0	0	0	1 (17)	1 (25)	0	0	0	2 (8)
Thrombocytopenia	0	0	0	1 (17)	1 (25)	0	0	0	2 (8)
Lymphopenia ^c	0	1 (25)	0	0	0	1 (100)	0	0	2 (8)
Grade 4 (all)									
Lymphopenia ^c	0	0	2 (50)	2 (33)	1 (25)	0	0	0	5 (19)

- 1, n=2)

Poster presented at the 64th ASH Annual Meeting | Dec 10-13, 2022. Corresponding author Krina Patel: kpatel1@mdanderson.org

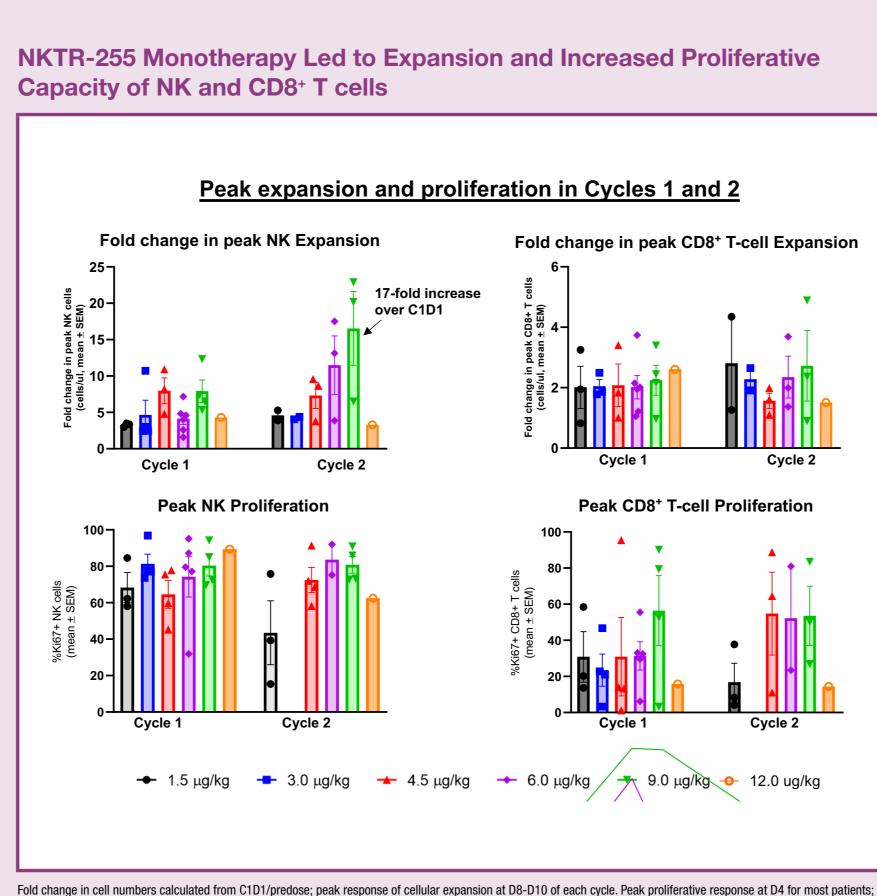
Heavily Pre-treated Population Enrolled in NKTR-255 Dose-Escalation Phase (n=26) Patient Demographics and Disease Characteristics

CAR-T, chimeric antigen receptor T-cell therapy; CD, cluster of differentiation; IgA/G, immunoglobulin A/G; IMiD, Immunomodulatory imide drugs; ISS, International Staging System; MM,

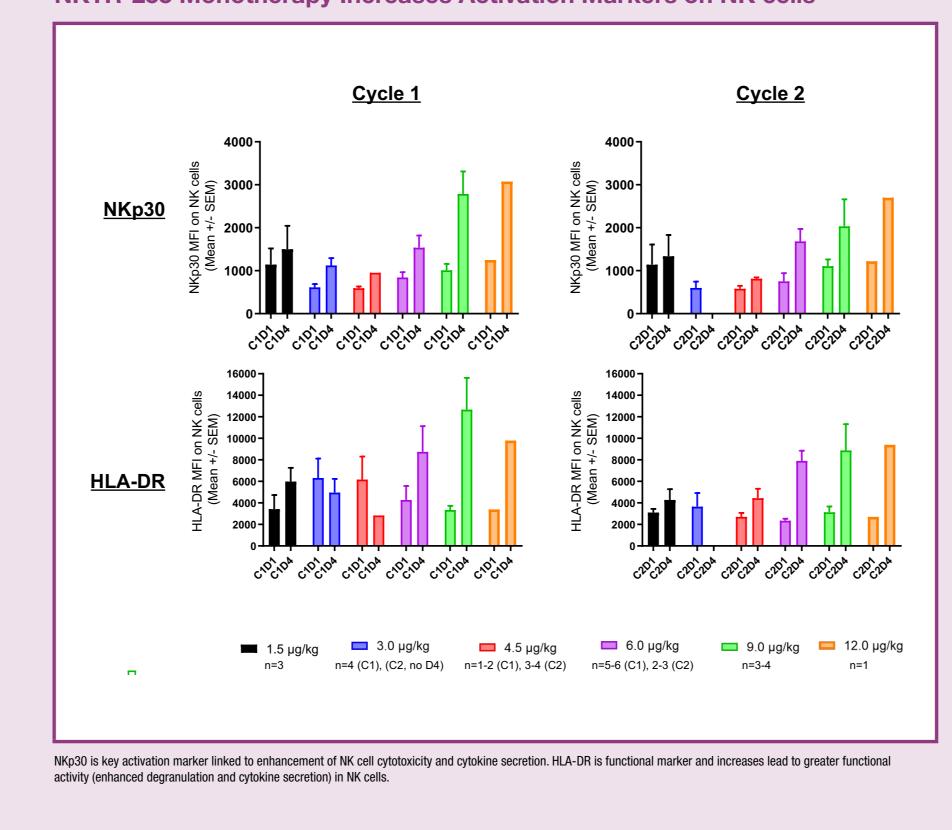
NKTR-255 Monotherapy Demonstrates Extended Half-life with No/Minimal

Summary of PK parameters (Cycle 1)

cle 1	Cycle	2					
	Cycle Z		DOSE	C _{max} (ng/mL)	AUC _{last} (hr*ng/mL)	T _{1/2} (hr)	CL (L/hr)
			1.5 ug/kg	18.1	212	26.5	0.61
	1000 🗐	1.5 ug/kg	(n=3)	(45.5)	(68.7)	(9.90)	(38.8)
		3.0 ug/kg	3.0 µg/kg	63.7	993	34.4	0.29
		4.5 ug/kg	(n=4)	(26.0)	(60.8)	(47.9)	(45.0)
		6.0 ug/kg 9.0 ug/kg	4.5 µg/kg	93.3	1572	47.9	0.30
		12.0 ug/kg	(n=4)	(24.4)	(39.7)	(20.3)	(37.8)
			6.0 µg/kg	98.0	1945	58.1	0.36
т			(n=3)	(32.3)	(50.5)	(28.1)	(44.2)
	Mean (SD) Concentration (ng/ml)		9.0 µg/kg	183	4016	68.0	0.20
_		~	(n=3)	(12.1)	(40.0)	(56.6)	(41.0)
	0.01		12.0 µg/kg	225	4308	86.7	0.20
336 504	0 168 Time (ho	336 504	(n = 1)				


Preliminary PK analyses showed target-mediated drug disposition at the lowest dose level (1.5 μ g/kg) and linear PK toward higher dose levels (\geq 3.0 μ g/kg).

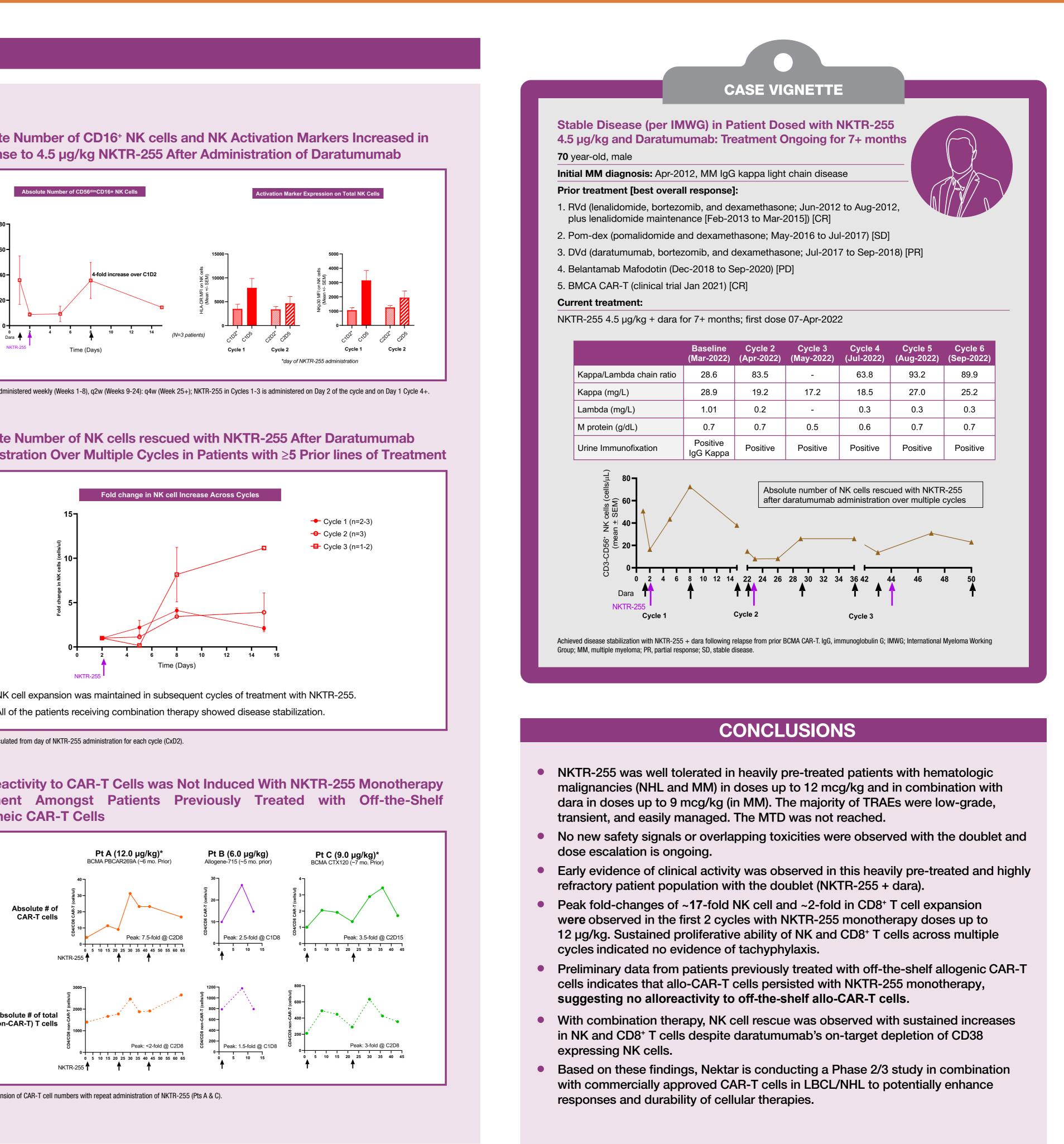
NKTR-255 was Well Tolerated as Monotherapy and in Combination With Daratumumab; Most TRAEs were Transient and Resolved Spontaneously or Using


• 12 (46%) patients experienced serious TEAEs, of which 8 (31%) were NKTR-255 related. Serious TEAEs that occurred in 2 or more patients are IRR (Grade 1-2, n=5), CRS (Grade

• Grade ≥3 lymphopenia occurred in 27% (7/26) of patients receiving NKTR-255. The median time to baseline recovery for these lymphopenia events was 3 days (range: 2 to 9 days). • No ADAs detected in 54 samples collected from 17 subjects treated with NKTR-255 monotherapy for up to 8 cycles over the dose range of 1.5 to 9 μ g/kg.

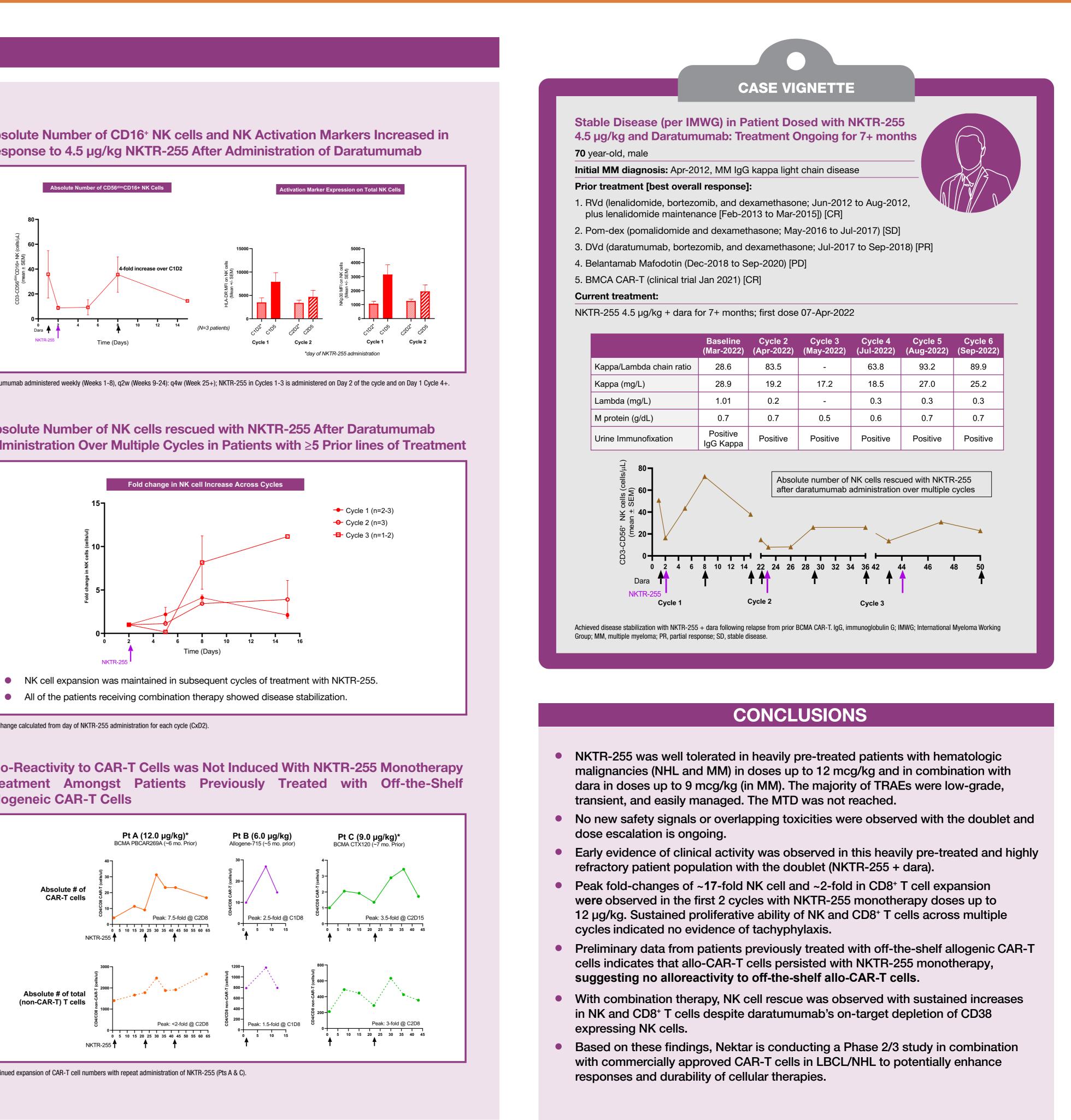
Sinical cutoff: October 20, 2022; During the first cycle, patients were not allowed to receive pre-medications (antipyretic/antihistamines). A patient is only counted once within each preferred term or grouped term, using highest toxicity grade. ^aGroup term includes body temperature increase, chills, headache, myalgia, hyperhidrosis, hyperpyrexia, influenza like illness, nausea, and pyrexia; ^bGroup term includes neutropenia, leukopenia and white blood cell count decrease. ^cGroup term includes lymphopenia and lymphocyte count decrease.

no Ki67 data available for 3.0 µg/kg patients in C2.


ACKNOWLEDGMENTS

This study is funded by Nektar Therapeutics, San Francisco, CA. The study was approved by the institutional review board of each participating site and informed consent is obtained from all patients.

DISCLOSURES The presenting author, Krina Patel, has had the following relationships within the last 24 months: Legend, Pfizer, Celgene, Merck, Poseida, PrecisionBi, Arcellx, Caribou, Nektar, Oncopeptides: Consultancy.


NKTR-255 Monotherapy Increases Activation Markers on NK cells

Fold change calculated from day of NKTR-255 administration for each cycle (CxD2).

Allogeneic CAR-T Cells

ABBREVIATIONS

ADCC, antibody-dependent cellular cytotoxicity; CAR-T, chimeric antigen receptor T-cell therapy; CD, cluster of differentiation; CRS, cytokine-release syndrome; CTCAE, Common Terminology Criteria for Adverse Events; DLT, dose-limiting toxicity; FcR, Fc receptor; IFN, interferon; IgA/G, immunoglobulin A/G; IL, interleukin; IL-15R, interleukin-15 receptor; IL-2R, interleukin-2 receptor; IMWG, International Myeloma Working Group; ISS, International Staging System; IV, intravenous; mAb, monoclonal antibody; MCP, monocyte chemoattractant protein; MM, multiple myeloma; MTD, maximum tolerated dose; NHL, non-Hodgkin lymphoma; NK, natural killer; PD, pharmacodynamic; PK, pharmacokinetic; PR, partial response; r/r, relapsed/refractory; rhlL-15, recombinant human interleukin 15; RP2D, recommended phase 2 dose; SD, standard deviation; SEM, standard error of the mean; TRAE, treatment-related adverse event; Tregs, regulatory T cells.

REFERENCES

1. Casneuf T, et al. Blood Advances 2017;1(23): 2105–2114. 2. Verkleij, et al. Blood 2021;138;p728. 3. Fernandez RA, 2022 Jul 26; Blood Advances. 2022007985 **4.** Conlon KC, et al. *J Clin Oncol* 2015;33:74–82. 5. Miyazaki T, et al. J Immunother Cancer 2021;9:e002024.

6. Miyazaki T, et al. Presented at AACR Annual Meeting 2019:3265.

7. Hirayama A, et al. Blood Advances 2022.

8. Kivimäe S, et al. J Immunother Cancer 2019;7(Suppl. 1):P619. 9. Altan M et al. J Immunother Cancer 2021;9(Suppl. 2):A1007. **10.** Shah N, et al. *Future Oncol* 2021;17:3549–3560.

