

NKTR-255: Accessing IL-15 **Therapeutic Potential through Robust** and Sustained Engagement of Innate and Adaptive Immunity

Peiwen Kuo Scientist, Research Biology **Nektar Therapeutics**

August 31st, 2018 Emerging Immuno-Oncology Targets

The immunity cycle and multiple points of intervention for **I-O therapies**

Source:

NEKTAR

Nektar's immuno-oncology strategy to create therapies that cover the immunity cycle

NEKTAR

Therapies need to be accessible as medicines

The potential of IL-15 in immuno-oncology

Central memory CD8+T cells

Effector/effector memory CD8+T cells

NK cells

- IL-15 is a pleiotropic cytokine with roles in innate and adaptive immunity
- Identified by NCI as one of the most promising immuno-oncology agents
- Induces survival of CD8 central memory and stem cell memory cells
- Essential factor for NK development and homeostasis
- In vitro, IL-15 can reverse tumor-induced NK dysfunction
- Does not induce Tregs

NEKTAR

Binding to IL-15Rα is required to access the biological functions of IL-15

- Three potential modes of interaction
 - Trans-presentation: IL-15 binds to IL-15R α on one cell (eq. DC) then signals through R $\beta\gamma$ on a second cell (e.g. • T-cell)
 - Cis-presentation: soluble IL-15 binds to IL-15R α and R $\beta\gamma$ on the same cell •
 - Binding of soluble complex: soluble IL-15:IL-15R α heterodimer binds to R $\beta\gamma$ •

IL-15/IL-15Ra fusion protein as a therapeutic signals in an IL-15Ra independent manner, loses biological • context **NEKTAR**

The challenge to therapeutic use of IL-15

- IL-15 displays rapid clearance from plasma
- In vivo signaling activity is similarly short-lived

Mouse PK: IL-15 0.5mpk i.p., serum assayed by ELISA

Mouse PD: IL-15 0.3mpk i.p., whole blood stained for leukocyte surface markers and pSTAT5, measured by flow cytometry

- Requires daily dosing or multi-day continuous infusion for optimal activity
- Potential to have Cmax-related toxicity

NEKTAR

NKTR-255 – polymer conjugated IL-15

Design Goals:

- Improve PK and PD to sustain IL-15 activity and achieve large pharmacodynamic effect without need for daily dosing
- Retain binding to IL-15Rα to maintain full spectrum of IL-15 biology
- No mutagenesis or complex to soluble IL-15R α
- As a result, NKTR-255:
 - Stimulates NK activation and proliferation
 - Supports CD8 T-cell survival and memory formation
 - Shows single-agent efficacy in syngeneic tumor models

NKTR-255 is first potential medicine to access the IL-15 pathway by preserving receptor binding to IL-15R α with antibody-like dosing

NKTR-255 retains affinity for IL-15Rα

Conjugate	k _{on} (M ⁻¹ s ⁻¹)	k _{off} (s ⁻¹)	К _D (рМ)	
IL-15	7.88 x 10 ⁶	1.33 x 10 ⁻⁴	16.2	
NKTR-255	1.08 x 10 ⁶	1.69 x 10 ⁻⁴	182	

- Many conjugates were screened for ability to bind IL-15R α
- Conjugation chemistry parameters were carefully selected to arrive at an optimized combination of design goals
- NKTR-255 affinity for IL-15Rα is ~10X weaker than IL-15

NEKTAR

Affinity measured by BIAcore, using IL-15Ra:Fc captured by immobilized anti-Fc NKTR-255 interaction with β and $\alpha\beta$ were also ~8-10X weaker than IL-15

NKTR-255 signaling is mediated via IL-15Rα

Treatment	IL-15		NKTR-255		IL-15/IL-15Rα complex	
	WT	КО	WT	ко	WT	ко
pSTAT5 EC50 (ng/ml)	15.58	347.3	26.23	1220	20.35	54.23
EC50 ratio	22.29		46.51		2.66	

NEKTAR

% pSTAT5 (CD45)

NKTR-255 signaling is dependent on IL-15Rα as is IL-15

NKTR-255 drives IL-15-like signaling across species

IL-15 EC50 (ng/ml)	NK	CD8 T	CD4 T	NKTR-255 EC50 (ng/ml)	NK	CD8 T
Human	0.48	1.5	1.6	Human	5.1	4.9
Cyno-monkey	0.24	2.6	4.0	Cyno-monkey	6.9	39
Mouse	1.8	0.27	1.2	Mouse	42	3.4

- In human, NKTR-255 exhibits equal potency across three populations
- NKTR-255 potency to NK cells is preserved across species except for mouse
- NKTR-255 potency to T cells is different depending on species
- NKTR-255 species difference is similar to that for IL-15
- Varying potency across species attributed to differences in IL-15 Ra expression level

NEKTAR

CD4 T
5.3
53
19

NKTR-255 binds IL-15R α to engage the IL-15 pathway

NKTR-255 retains IL-15Rα binding

- SPR data supports that binding to IL-15R α is maintained, with an affinity that is ~10x weaker than IL-15
- \blacktriangleright NKTR-255 binding to IL-15R α is essential for its activity
 - JAK/STAT signaling is abrogated in the absence of IL-15Ra
- NKTR-255 signaling is preserved across species and species difference is similar between NKTR-255 and IL-15

NKTR-255: sustained PK and robust PD in rodents and non-human primates

NKTR-255 achieves sustained plasma exposure in mice, rats and NHP after single dose

- PEGylation Significantly Improved NKTR-255 PK Profiles:
 - PEGylation significantly enhanced plasma exposure and reduced total clearance
 - Extended plasma exposure across the species on single dose (Mice, Rat and NHP)

Note: Parent IL-15 was not dosed in the Rat PK study; No apparent gender differences are noted in the Cyno study NEKTAR

NKTR-255 drives prolonged signaling and proliferation in NK cells and CD8 T cells in mice after a single dose

- 0.03 mg/kg

NKTR-255 expands CD8 and NK cells in vivo in NHPs

Cynomolgus monkeys NKTR-255 IV dose response PD: blood stained for leukocyte surface markers and pSTAT5 + Ki67, measured by flow cytometry

- vehicle

- + 0.01 mg/kg
- --- 0.001 mg/kg

vehicle

Memory CD8 T cells are highly sensitive to NKTR-255, exhibiting robust expansion after a single dose in mice

cells/ul

CD8 TEM

NHP CD8 memory populations are sensitive to NKTR-255

Cynomolgus monkeys NKTR-255 IV dose response PD: blood stained memory markers (CD45RA, CD197, CD95) in CD8 parent gate.

--- 0.1 mg/kg → 0.01 mg/kg - 0.001 mg/kg - vehicle

NKTR-255 expands NK subpopulations in mice

NK cells at all stages of maturation are highly responsive to NKTR-255

Terminal Effector (CD11b+CD27+)

Most mature Activation tightly regulation Higher activation threshold

Potential to differentiate

High Effector (CD11b+CD27+) High cytokine secretion Great effector function Lower activation threshold

Early NK (CD11b-CD27+) High cytokine secretion

NKTR-255 expands NK subpopulations in mice

NK cells at all stages of maturation are highly responsive to NKTR-255

High Effector (CD11b+CD27+) High cytokine secretion Great effector function Lower activation threshold

Early NK (CD11b-CD27+) High cytokine secretion

NKTR-255 increases effector protein expression in expanded NK and CD8 T cells in mice

NKTR-255 increases levels of cytotoxic enzymes in NK and CD8 T cells in NHPs

NKTR-255 increases protein levels of cytolytic enzymes in both CD8 and NK cells

NKTR-255 enhances murine splenic NK cytotoxicity

A single dose of NKTR-255 boosts NK cell killing for at least 6 days (0.3 mg/kg)

NEKTAR

Label cells with 7-AAD; Analyze lysis of target cells via flow cytometry

NKTR-255 has extended PK and drives robust NK and CD8 T cell responses

- NKTR-255 exhibits substantially superior PK over conventional IL-15
 - Prolonged plasma exposure in rodents ($T_{1/2} \sim 14-18$ hrs) and NHP ($T_{1/2} \sim 30$ hrs) vs IL-15 ($T_{1/2} < 1$ hr)
- CD8 T and NK cells are responsive to NKTR-255 stimulation in vivo in mice and NHPs
 - NK cells are highly sensitive: %pSTAT5 and %Ki67 increases measurable at lowest tested dose level (0.001 mg/kg) in NHP
 - CD8 T cells are very responsive: %Ki67 and cell expansion detectable at 0.003 and 0.01 mg/kg in NHP, respectively
- Higher sensitivity to NKTR-255 in CD8 memory T cells relative to naïve CD8 T cells
 - Graded sensitivity within memory subpopulations in mouse and cyno, (e.g. cyno T_{EM}>T_{SCM}>T_{CM}>T_{Naive}) in proliferative response in NHP
- CD4 T cells are less responsive to NKTR-255 stimulation in mice and NHPs
- NKTR-255 increases levels of cytotoxic enzymes to promote cytolytic function
 - In mice, NKTR-255 engages NK cells at all levels of maturation and increases Granzyme B and CD16 expression
 - NKTR-255 enhances the cell-killing ability of murine splenic NK cells

NEKTAR

In mouse and NHP, NKTR-255 increases Granzyme B expression in both CD8 T and NK cells

NKTR-255: engaging NK and CD8 T cells to boost single agent anti-tumor efficacy

NKTR-255 driving IL-15 anti-cancer immunotherapy via NK and **CD8** biology

NK cell biology

- Activation balance among human NK subtypes
 - IL-15 is similarly potent to regulatory CD56^{bright} and cytotoxic CD56^{dim/null} NK sub-populations
 - IL-15 pre-activated NK cells show sustained function

CD8 cell biology

- Supporting memory CD8 T cell longevity and function •
 - IL-15 maintains Ag-specific effector CD8 T cells after the contraction phase by promoting their survival and proliferation

NKTR-255 enhances NK cell-dependent anti-tumor efficacy in CT26 lung metastasis model

Lung nodules growth inhibition

NKTR-255 efficacy in disseminated CT26 model is driven by NK cell activity

****=p<0.0001 vs Vehicle ^^^^=p<0.0001 vs NKTR-255 0.03 mg/kg

####=p<0.0001 vs NKTR-255 0.1 mg/kg (One-way ANOVA, Tukey's multiple comp.))

NK cell proliferation in the lung

NKTR-255 inhibits spontaneous metastasis in the 4T1 model

NEKTAR

Conclusion

NKTR-255 overcomes many limitations of IL-15

- Improved PK to allow infrequent administration
- Provides sustained IL-15 PD activity from a single dose
- Achieves full breadth of signaling profile as expected for IL-15
- \triangleright By design, NKTR-255 maintains binding affinity for IL-15R α
- NKTR-255 promotes the proliferation of CD8 memory T cells and induces vast NK cell expansion and increased cytotoxic activity
- NKTR-255 has stand-alone efficacy in NK-driven metastasis models
- NKTR-255 provides access to the immunotherapeutic potential of the IL-15 pathway by enhancing both NK and CD8 anti-tumor responses.